\(\int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx\) [104]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F(-1)]
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 160 \[ \int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx=\frac {\left (1-\sqrt {2}\right ) \arctan \left (\frac {\sqrt {2-b}-2 x}{\sqrt {2+b}}\right )}{2 \sqrt {2+b}}-\frac {\left (1-\sqrt {2}\right ) \arctan \left (\frac {\sqrt {2-b}+2 x}{\sqrt {2+b}}\right )}{2 \sqrt {2+b}}-\frac {\left (1+\sqrt {2}\right ) \log \left (1-\sqrt {2-b} x+x^2\right )}{4 \sqrt {2-b}}+\frac {\left (1+\sqrt {2}\right ) \log \left (1+\sqrt {2-b} x+x^2\right )}{4 \sqrt {2-b}} \]

[Out]

-1/4*ln(1+x^2-x*(2-b)^(1/2))*(1+2^(1/2))/(2-b)^(1/2)+1/4*ln(1+x^2+x*(2-b)^(1/2))*(1+2^(1/2))/(2-b)^(1/2)+1/2*a
rctan((-2*x+(2-b)^(1/2))/(2+b)^(1/2))*(1-2^(1/2))/(2+b)^(1/2)-1/2*arctan((2*x+(2-b)^(1/2))/(2+b)^(1/2))*(1-2^(
1/2))/(2+b)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {1183, 648, 632, 210, 642} \[ \int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx=\frac {\left (1-\sqrt {2}\right ) \arctan \left (\frac {\sqrt {2-b}-2 x}{\sqrt {b+2}}\right )}{2 \sqrt {b+2}}-\frac {\left (1-\sqrt {2}\right ) \arctan \left (\frac {\sqrt {2-b}+2 x}{\sqrt {b+2}}\right )}{2 \sqrt {b+2}}-\frac {\left (1+\sqrt {2}\right ) \log \left (-\sqrt {2-b} x+x^2+1\right )}{4 \sqrt {2-b}}+\frac {\left (1+\sqrt {2}\right ) \log \left (\sqrt {2-b} x+x^2+1\right )}{4 \sqrt {2-b}} \]

[In]

Int[(Sqrt[2] - x^2)/(1 + b*x^2 + x^4),x]

[Out]

((1 - Sqrt[2])*ArcTan[(Sqrt[2 - b] - 2*x)/Sqrt[2 + b]])/(2*Sqrt[2 + b]) - ((1 - Sqrt[2])*ArcTan[(Sqrt[2 - b] +
 2*x)/Sqrt[2 + b]])/(2*Sqrt[2 + b]) - ((1 + Sqrt[2])*Log[1 - Sqrt[2 - b]*x + x^2])/(4*Sqrt[2 - b]) + ((1 + Sqr
t[2])*Log[1 + Sqrt[2 - b]*x + x^2])/(4*Sqrt[2 - b])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1183

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {\sqrt {2} \sqrt {2-b}-\left (1+\sqrt {2}\right ) x}{1-\sqrt {2-b} x+x^2} \, dx}{2 \sqrt {2-b}}+\frac {\int \frac {\sqrt {2} \sqrt {2-b}+\left (1+\sqrt {2}\right ) x}{1+\sqrt {2-b} x+x^2} \, dx}{2 \sqrt {2-b}} \\ & = \frac {1}{4} \left (-1+\sqrt {2}\right ) \int \frac {1}{1-\sqrt {2-b} x+x^2} \, dx+\frac {1}{4} \left (-1+\sqrt {2}\right ) \int \frac {1}{1+\sqrt {2-b} x+x^2} \, dx-\frac {\left (1+\sqrt {2}\right ) \int \frac {-\sqrt {2-b}+2 x}{1-\sqrt {2-b} x+x^2} \, dx}{4 \sqrt {2-b}}+\frac {\left (1+\sqrt {2}\right ) \int \frac {\sqrt {2-b}+2 x}{1+\sqrt {2-b} x+x^2} \, dx}{4 \sqrt {2-b}} \\ & = -\frac {\left (1+\sqrt {2}\right ) \log \left (1-\sqrt {2-b} x+x^2\right )}{4 \sqrt {2-b}}+\frac {\left (1+\sqrt {2}\right ) \log \left (1+\sqrt {2-b} x+x^2\right )}{4 \sqrt {2-b}}+\frac {1}{2} \left (1-\sqrt {2}\right ) \text {Subst}\left (\int \frac {1}{-2-b-x^2} \, dx,x,-\sqrt {2-b}+2 x\right )+\frac {1}{2} \left (1-\sqrt {2}\right ) \text {Subst}\left (\int \frac {1}{-2-b-x^2} \, dx,x,\sqrt {2-b}+2 x\right ) \\ & = \frac {\left (1-\sqrt {2}\right ) \tan ^{-1}\left (\frac {\sqrt {2-b}-2 x}{\sqrt {2+b}}\right )}{2 \sqrt {2+b}}-\frac {\left (1-\sqrt {2}\right ) \tan ^{-1}\left (\frac {\sqrt {2-b}+2 x}{\sqrt {2+b}}\right )}{2 \sqrt {2+b}}-\frac {\left (1+\sqrt {2}\right ) \log \left (1-\sqrt {2-b} x+x^2\right )}{4 \sqrt {2-b}}+\frac {\left (1+\sqrt {2}\right ) \log \left (1+\sqrt {2-b} x+x^2\right )}{4 \sqrt {2-b}} \\ \end{align*}

Mathematica [F(-1)]

Timed out. \[ \int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx=\text {\$Aborted} \]

[In]

Integrate[(Sqrt[2] - x^2)/(1 + b*x^2 + x^4),x]

[Out]

$Aborted

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.28

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}+\textit {\_Z}^{2} b +1\right )}{\sum }\frac {\left (-\textit {\_R}^{2}+\sqrt {2}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3}+\textit {\_R} b}\right )}{2}\) \(44\)
default \(\frac {\left (-\sqrt {\left (b -2\right ) \left (2+b \right )}-b -2 \sqrt {2}\right ) \arctan \left (\frac {2 x}{\sqrt {2 \sqrt {\left (b -2\right ) \left (2+b \right )}+2 b}}\right )}{\sqrt {\left (b -2\right ) \left (2+b \right )}\, \sqrt {2 \sqrt {\left (b -2\right ) \left (2+b \right )}+2 b}}+\frac {\left (-\sqrt {\left (b -2\right ) \left (2+b \right )}+b +2 \sqrt {2}\right ) \arctan \left (\frac {2 x}{\sqrt {-2 \sqrt {\left (b -2\right ) \left (2+b \right )}+2 b}}\right )}{\sqrt {\left (b -2\right ) \left (2+b \right )}\, \sqrt {-2 \sqrt {\left (b -2\right ) \left (2+b \right )}+2 b}}\) \(136\)

[In]

int((-x^2+2^(1/2))/(x^4+b*x^2+1),x,method=_RETURNVERBOSE)

[Out]

1/2*sum((-_R^2+2^(1/2))/(2*_R^3+_R*b)*ln(x-_R),_R=RootOf(_Z^4+_Z^2*b+1))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 517 vs. \(2 (123) = 246\).

Time = 0.26 (sec) , antiderivative size = 517, normalized size of antiderivative = 3.23 \[ \int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx=-\frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {3 \, b + 4 \, \sqrt {2} + \sqrt {b^{2} - 4}}{b^{2} - 4}} \log \left (2 \, {\left (2 \, b^{2} - 9\right )} x + \sqrt {\frac {1}{2}} {\left (2 \, b^{3} - 3 \, \sqrt {2} {\left (b^{2} - 4\right )} - 8 \, b - \frac {2 \, b^{4} - 14 \, b^{2} - \sqrt {2} {\left (b^{3} - 4 \, b\right )} + 24}{\sqrt {b^{2} - 4}}\right )} \sqrt {-\frac {3 \, b + 4 \, \sqrt {2} + \sqrt {b^{2} - 4}}{b^{2} - 4}}\right ) + \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {3 \, b + 4 \, \sqrt {2} + \sqrt {b^{2} - 4}}{b^{2} - 4}} \log \left (2 \, {\left (2 \, b^{2} - 9\right )} x - \sqrt {\frac {1}{2}} {\left (2 \, b^{3} - 3 \, \sqrt {2} {\left (b^{2} - 4\right )} - 8 \, b - \frac {2 \, b^{4} - 14 \, b^{2} - \sqrt {2} {\left (b^{3} - 4 \, b\right )} + 24}{\sqrt {b^{2} - 4}}\right )} \sqrt {-\frac {3 \, b + 4 \, \sqrt {2} + \sqrt {b^{2} - 4}}{b^{2} - 4}}\right ) - \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {3 \, b + 4 \, \sqrt {2} - \sqrt {b^{2} - 4}}{b^{2} - 4}} \log \left (2 \, {\left (2 \, b^{2} - 9\right )} x + \sqrt {\frac {1}{2}} {\left (2 \, b^{3} - 3 \, \sqrt {2} {\left (b^{2} - 4\right )} - 8 \, b + \frac {2 \, b^{4} - 14 \, b^{2} - \sqrt {2} {\left (b^{3} - 4 \, b\right )} + 24}{\sqrt {b^{2} - 4}}\right )} \sqrt {-\frac {3 \, b + 4 \, \sqrt {2} - \sqrt {b^{2} - 4}}{b^{2} - 4}}\right ) + \frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {3 \, b + 4 \, \sqrt {2} - \sqrt {b^{2} - 4}}{b^{2} - 4}} \log \left (2 \, {\left (2 \, b^{2} - 9\right )} x - \sqrt {\frac {1}{2}} {\left (2 \, b^{3} - 3 \, \sqrt {2} {\left (b^{2} - 4\right )} - 8 \, b + \frac {2 \, b^{4} - 14 \, b^{2} - \sqrt {2} {\left (b^{3} - 4 \, b\right )} + 24}{\sqrt {b^{2} - 4}}\right )} \sqrt {-\frac {3 \, b + 4 \, \sqrt {2} - \sqrt {b^{2} - 4}}{b^{2} - 4}}\right ) \]

[In]

integrate((-x^2+2^(1/2))/(x^4+b*x^2+1),x, algorithm="fricas")

[Out]

-1/2*sqrt(1/2)*sqrt(-(3*b + 4*sqrt(2) + sqrt(b^2 - 4))/(b^2 - 4))*log(2*(2*b^2 - 9)*x + sqrt(1/2)*(2*b^3 - 3*s
qrt(2)*(b^2 - 4) - 8*b - (2*b^4 - 14*b^2 - sqrt(2)*(b^3 - 4*b) + 24)/sqrt(b^2 - 4))*sqrt(-(3*b + 4*sqrt(2) + s
qrt(b^2 - 4))/(b^2 - 4))) + 1/2*sqrt(1/2)*sqrt(-(3*b + 4*sqrt(2) + sqrt(b^2 - 4))/(b^2 - 4))*log(2*(2*b^2 - 9)
*x - sqrt(1/2)*(2*b^3 - 3*sqrt(2)*(b^2 - 4) - 8*b - (2*b^4 - 14*b^2 - sqrt(2)*(b^3 - 4*b) + 24)/sqrt(b^2 - 4))
*sqrt(-(3*b + 4*sqrt(2) + sqrt(b^2 - 4))/(b^2 - 4))) - 1/2*sqrt(1/2)*sqrt(-(3*b + 4*sqrt(2) - sqrt(b^2 - 4))/(
b^2 - 4))*log(2*(2*b^2 - 9)*x + sqrt(1/2)*(2*b^3 - 3*sqrt(2)*(b^2 - 4) - 8*b + (2*b^4 - 14*b^2 - sqrt(2)*(b^3
- 4*b) + 24)/sqrt(b^2 - 4))*sqrt(-(3*b + 4*sqrt(2) - sqrt(b^2 - 4))/(b^2 - 4))) + 1/2*sqrt(1/2)*sqrt(-(3*b + 4
*sqrt(2) - sqrt(b^2 - 4))/(b^2 - 4))*log(2*(2*b^2 - 9)*x - sqrt(1/2)*(2*b^3 - 3*sqrt(2)*(b^2 - 4) - 8*b + (2*b
^4 - 14*b^2 - sqrt(2)*(b^3 - 4*b) + 24)/sqrt(b^2 - 4))*sqrt(-(3*b + 4*sqrt(2) - sqrt(b^2 - 4))/(b^2 - 4)))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1469 vs. \(2 (128) = 256\).

Time = 1.34 (sec) , antiderivative size = 1469, normalized size of antiderivative = 9.18 \[ \int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx=\text {Too large to display} \]

[In]

integrate((-x**2+2**(1/2))/(x**4+b*x**2+1),x)

[Out]

-RootSum(_t**4*(16*b**4 - 128*b**2 + 256) + _t**2*(12*b**3 + 16*sqrt(2)*b**2 - 48*b - 64*sqrt(2)) + 2*b**2 + 6
*sqrt(2)*b + 9, Lambda(_t, _t*log(_t**3*(64*b**12/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 +
6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2 + 729) + 672*sqrt(2)*b**11/(8*b**10
+ 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b*
*3 - 3402*b**2 + 729) + 5760*b**10/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 6470*b**6 + 531
0*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2 + 729) + 12064*sqrt(2)*b**9/(8*b**10 + 88*sqrt(2)*b
**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2
 + 729) + 17744*b**8/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5
 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2 + 729) - 27480*sqrt(2)*b**7/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8
 + 2144*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2 + 729) - 1546
08*b**6/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4
- 2322*sqrt(2)*b**3 - 3402*b**2 + 729) - 141376*sqrt(2)*b**5/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt
(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2 + 729) - 69072*b**4/(8*b*
*10 + 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2
)*b**3 - 3402*b**2 + 729) + 61704*sqrt(2)*b**3/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 647
0*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2 + 729) + 78192*b**2/(8*b**10 + 88*sqrt(
2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*
b**2 + 729) - 2592*sqrt(2)*b/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8 + 2144*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt
(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2 + 729) - 15552/(8*b**10 + 88*sqrt(2)*b**9 + 828*b**8 + 21
44*sqrt(2)*b**7 + 6470*b**6 + 5310*sqrt(2)*b**5 + 2781*b**4 - 2322*sqrt(2)*b**3 - 3402*b**2 + 729)) + _t*(16*b
**7/(4*b**6 + 28*sqrt(2)*b**5 + 152*b**4 + 192*sqrt(2)*b**3 + 189*b**2 - 27*sqrt(2)*b - 81) + 116*sqrt(2)*b**6
/(4*b**6 + 28*sqrt(2)*b**5 + 152*b**4 + 192*sqrt(2)*b**3 + 189*b**2 - 27*sqrt(2)*b - 81) + 668*b**5/(4*b**6 +
28*sqrt(2)*b**5 + 152*b**4 + 192*sqrt(2)*b**3 + 189*b**2 - 27*sqrt(2)*b - 81) + 942*sqrt(2)*b**4/(4*b**6 + 28*
sqrt(2)*b**5 + 152*b**4 + 192*sqrt(2)*b**3 + 189*b**2 - 27*sqrt(2)*b - 81) + 1226*b**3/(4*b**6 + 28*sqrt(2)*b*
*5 + 152*b**4 + 192*sqrt(2)*b**3 + 189*b**2 - 27*sqrt(2)*b - 81) + 144*sqrt(2)*b**2/(4*b**6 + 28*sqrt(2)*b**5
+ 152*b**4 + 192*sqrt(2)*b**3 + 189*b**2 - 27*sqrt(2)*b - 81) - 378*b/(4*b**6 + 28*sqrt(2)*b**5 + 152*b**4 + 1
92*sqrt(2)*b**3 + 189*b**2 - 27*sqrt(2)*b - 81) - 108*sqrt(2)/(4*b**6 + 28*sqrt(2)*b**5 + 152*b**4 + 192*sqrt(
2)*b**3 + 189*b**2 - 27*sqrt(2)*b - 81)) + x)))

Maxima [F]

\[ \int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx=\int { -\frac {x^{2} - \sqrt {2}}{x^{4} + b x^{2} + 1} \,d x } \]

[In]

integrate((-x^2+2^(1/2))/(x^4+b*x^2+1),x, algorithm="maxima")

[Out]

-integrate((x^2 - sqrt(2))/(x^4 + b*x^2 + 1), x)

Giac [F]

\[ \int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx=\int { -\frac {x^{2} - \sqrt {2}}{x^{4} + b x^{2} + 1} \,d x } \]

[In]

integrate((-x^2+2^(1/2))/(x^4+b*x^2+1),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 14.43 (sec) , antiderivative size = 1227, normalized size of antiderivative = 7.67 \[ \int \frac {\sqrt {2}-x^2}{1+b x^2+x^4} \, dx=-\mathrm {atan}\left (\frac {x\,\sqrt {\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,32{}\mathrm {i}-b\,x\,{\left (\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}\right )}^{3/2}\,256{}\mathrm {i}+b^2\,x\,\sqrt {\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,8{}\mathrm {i}-b^4\,x\,\sqrt {\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,4{}\mathrm {i}+b^3\,x\,{\left (\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}\right )}^{3/2}\,128{}\mathrm {i}-b^5\,x\,{\left (\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}\right )}^{3/2}\,16{}\mathrm {i}+\sqrt {2}\,b\,x\,\sqrt {\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,32{}\mathrm {i}-\sqrt {2}\,b^3\,x\,\sqrt {\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,8{}\mathrm {i}}{4\,\sqrt {2}\,b-\sqrt {2}\,b^3+\sqrt {2}\,\sqrt {b^6-12\,b^4+48\,b^2-64}-2\,b^2+8}\right )\,\sqrt {\frac {12\,b+16\,\sqrt {2}-4\,\sqrt {2}\,b^2-3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,2{}\mathrm {i}+\mathrm {atan}\left (\frac {x\,\sqrt {-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,32{}\mathrm {i}-b\,x\,{\left (-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}\right )}^{3/2}\,256{}\mathrm {i}+b^2\,x\,\sqrt {-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,8{}\mathrm {i}-b^4\,x\,\sqrt {-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,4{}\mathrm {i}+b^3\,x\,{\left (-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}\right )}^{3/2}\,128{}\mathrm {i}-b^5\,x\,{\left (-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}\right )}^{3/2}\,16{}\mathrm {i}+\sqrt {2}\,b\,x\,\sqrt {-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,32{}\mathrm {i}-\sqrt {2}\,b^3\,x\,\sqrt {-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,8{}\mathrm {i}}{\sqrt {2}\,b^3-4\,\sqrt {2}\,b+\sqrt {2}\,\sqrt {b^6-12\,b^4+48\,b^2-64}+2\,b^2-8}\right )\,\sqrt {-\frac {4\,\sqrt {2}\,b^2-16\,\sqrt {2}-12\,b+3\,b^3+\sqrt {b^6-12\,b^4+48\,b^2-64}}{8\,b^4-64\,b^2+128}}\,2{}\mathrm {i} \]

[In]

int((2^(1/2) - x^2)/(b*x^2 + x^4 + 1),x)

[Out]

atan((x*(-(4*2^(1/2)*b^2 - 16*2^(1/2) - 12*b + 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 1
28))^(1/2)*32i - b*x*(-(4*2^(1/2)*b^2 - 16*2^(1/2) - 12*b + 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4
 - 64*b^2 + 128))^(3/2)*256i + b^2*x*(-(4*2^(1/2)*b^2 - 16*2^(1/2) - 12*b + 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 6
4)^(1/2))/(8*b^4 - 64*b^2 + 128))^(1/2)*8i - b^4*x*(-(4*2^(1/2)*b^2 - 16*2^(1/2) - 12*b + 3*b^3 + (48*b^2 - 12
*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(1/2)*4i + b^3*x*(-(4*2^(1/2)*b^2 - 16*2^(1/2) - 12*b + 3*b^3
+ (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(3/2)*128i - b^5*x*(-(4*2^(1/2)*b^2 - 16*2^(1/2)
 - 12*b + 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(3/2)*16i + 2^(1/2)*b*x*(-(4*2^(
1/2)*b^2 - 16*2^(1/2) - 12*b + 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(1/2)*32i -
 2^(1/2)*b^3*x*(-(4*2^(1/2)*b^2 - 16*2^(1/2) - 12*b + 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*
b^2 + 128))^(1/2)*8i)/(2^(1/2)*b^3 - 4*2^(1/2)*b + 2^(1/2)*(48*b^2 - 12*b^4 + b^6 - 64)^(1/2) + 2*b^2 - 8))*(-
(4*2^(1/2)*b^2 - 16*2^(1/2) - 12*b + 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(1/2)
*2i - atan((x*((12*b + 16*2^(1/2) - 4*2^(1/2)*b^2 - 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^
2 + 128))^(1/2)*32i - b*x*((12*b + 16*2^(1/2) - 4*2^(1/2)*b^2 - 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8
*b^4 - 64*b^2 + 128))^(3/2)*256i + b^2*x*((12*b + 16*2^(1/2) - 4*2^(1/2)*b^2 - 3*b^3 + (48*b^2 - 12*b^4 + b^6
- 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(1/2)*8i - b^4*x*((12*b + 16*2^(1/2) - 4*2^(1/2)*b^2 - 3*b^3 + (48*b^2 -
12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(1/2)*4i + b^3*x*((12*b + 16*2^(1/2) - 4*2^(1/2)*b^2 - 3*b^3
 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(3/2)*128i - b^5*x*((12*b + 16*2^(1/2) - 4*2^(1
/2)*b^2 - 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(3/2)*16i + 2^(1/2)*b*x*((12*b +
 16*2^(1/2) - 4*2^(1/2)*b^2 - 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(1/2)*32i -
2^(1/2)*b^3*x*((12*b + 16*2^(1/2) - 4*2^(1/2)*b^2 - 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^
2 + 128))^(1/2)*8i)/(4*2^(1/2)*b - 2^(1/2)*b^3 + 2^(1/2)*(48*b^2 - 12*b^4 + b^6 - 64)^(1/2) - 2*b^2 + 8))*((12
*b + 16*2^(1/2) - 4*2^(1/2)*b^2 - 3*b^3 + (48*b^2 - 12*b^4 + b^6 - 64)^(1/2))/(8*b^4 - 64*b^2 + 128))^(1/2)*2i